Optical Beam Deflection Based AFM with Integrated Hardware and Software Platform for an Undergraduate Engineering Laboratory

نویسندگان

  • Siu Hong Loh
  • Wei Jie Cheah
چکیده

Atomic force microscopy (AFM) has been used extensively in nanoscience research since its invention. Recently, many teaching laboratories in colleges, undergraduate institutions, and even high schools incorporate AFM as an effective teaching tool for nanoscience education. This paper presents an optical beam deflection (OBD) based atomic force microscope, designed specifically for the undergraduate engineering laboratory as a teaching instrument. An electronic module for signal conditioning was built with components that are commonly available in an undergraduate electronic laboratory. In addition to off-the-shelf mechanical parts and optics, the design of custom-built mechanical parts waskept as simple as possible. Hence, the overall cost for the setup is greatly reduced. The AFM controller was developed using National Instruments Educational Laboratory Virtual Instrumentation Suite (NI ELVIS), an integrated hardware and software platform which can be programmed in LabVIEW. A simple yet effective control algorithm for scanning and feedback control was developed. Despite the use of an educational platform and low-cost components from the undergraduate laboratory, the developed AFM is capable of performing imaging in constant-force mode with submicron resolution and at reasonable scanning speed (approximately 18 min per image). Therefore, the AFM is suitable to be used as an educational tool for nanoscience. Moreover, the construction of the system can be a valuable educational experience for electronic and mechanical engineering students.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

High-speed imaging upgrade for a standard sample scanning atomic force microscope using small cantilevers.

We present an atomic force microscope (AFM) head for optical beam deflection on small cantilevers. Our AFM head is designed to be small in size, easily integrated into a commercial AFM system, and has a modular architecture facilitating exchange of the optical and electronic assemblies. We present two different designs for both the optical beam deflection and the electronic readout systems, and...

متن کامل

Analytical investigation of the practical range and deflection of megavoltage electron beam in the water phantom with the presence of magnetic field

Introduction: Integrated radiation therapy - MRI systems are capable of delivering high doses to the target tissues near sensitive organs and achieve better therapeutic results; however, the Applied magnetic fields for imaging, can influence the charged path, change the penetration depth and deflect the particles, laterally, leading to dose distribution variations. Therefore, i...

متن کامل

Nonlinear Vibration and Stability Analysis of Beam on the Variable Viscoelastic Foundation

The aim of this study is the investigation of the large amplitude deflection of an Euler-Bernoulli beam subjected to an axial load on a viscoelastic foundation with the strong damping. In order to achieve this purpose, the beam nonlinear frequency has been calculated by homotopy perturbation method (HPM) and Hamilton Approach (HA) and it was compared by the exact solutions for the different bou...

متن کامل

Field Programmable Gate Array–based Implementation of an Improved Algorithm for Objects Distance Measurement (TECHNICAL NOTE)

In this work, the design of a low-cost, field programmable gate array (FPGA)-based digital hardware platform that implements image processing algorithms for real-time distance measurement is presented. Using embedded development kit (EDK) tools from Xilinx, the system is developed on a spartan3 / xc3s400, one of the common and low cost field programmable gate arrays from the Xilinx Spartan fami...

متن کامل

GDQEM Analysis for Free Vibration of V-shaped Atomic Force Microscope Cantilevers

V-shaped and triangular cantilevers are widely employed in atomic force microscope (AFM) imaging techniques due to their stability. For the design of vibration control systems of AFM cantilevers which utilize patched piezo actuators, obtaining an accurate system model is indispensable prior to acquiring the information related to natural modes. A general differential quadrature element method (...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2017